Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase.

نویسندگان

  • K J Bame
  • J D Esko
چکیده

Heparan sulfate N-sulfotransferase catalyzes the transfer of sulfate groups from adenosine 3'-phosphate, 5'-phosphosulfate to the free amino groups of glucosamine residues in heparan sulfate. We have identified a Chinese hamster ovary cell mutant, designated pgsE-606, which is 3-5-fold defective in N-sulfotransferase activity. The residual enzyme activity is indistinguishable from the wild-type enzyme with respect to Km values for adenosine 3'-phosphate,5'-phosphosulfate and N-desulfoheparin, pH dependence, Arrhenius activation energy, and thermal lability. The mutation is recessive, and mixing experiments indicate that the mutant does not produce soluble antagonists of N-sulfotransferase. Inspection of the heparan sulfate chains from the mutant showed that the extent of N-sulfation is reduced about 2-3-fold. The addition of sulfate to hydroxyl groups on the chain is reduced to a similar extent, suggesting that N-sulfation and O-sulfation are normally coupled. Nitrous acid fragmentation of the chains showed that N-sulfated glucosamine residues are spaced much less frequently than in heparan sulfate from wild-type cells. The close correlation of enzyme activity to the number and position of N-sulfate groups indicates that N-sulfotransferase plays a pivotal role in determining the extent of sulfation of heparan sulfate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell surface heparan sulfate promotes replication of Toxoplasma gondii.

Previous work suggests that cell surface heparan sulfate acts as a receptor for the Apicomplexan parasite Toxoplasma gondii. Using Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis, we show that heparan sulfate is necessary and sufficient for infectivity. Further, we demonstrate that the parasite requires N sulfation of heparan sulfate initiated by N-deacetylase/N-sul...

متن کامل

Coupling of N-deacetylation and N-sulfation in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase.

The coordination of N-deacetylation and N-sulfation of heparan sulfate was examined in wild-type Chinese hamster ovary cells and mutant pgsE-606. This mutant expresses about 3-fold less N-sulfotransferase activity, which causes the proportion of N-sulfated GlcN residues in heparan sulfate to decline from 39 to 21% of total GlcN (Bame, K.J., and Esko, J.D. (1989) J. Biol. Chem. 264, 8059-8065). ...

متن کامل

Altered metabolism of thrombospondin by Chinese hamster ovary cells defective in glycosaminoglycan synthesis.

We examined the ability of Chinese hamster ovary (CHO) cell mutants defective in glycosaminoglycan synthesis to metabolize 125I-labeled thrombospondin (TSP). Wild type CHO cells bound and degraded 125I-TSP with kinetics similar to those reported for endothelial cells. Both binding and degradation were saturable (half-saturation at 20 micrograms/ml). When the concentration of labeled TSP was 1-5...

متن کامل

Bioengineered Chinese hamster ovary cells with Golgi-targeted 3-O-sulfotransferase-1 biosynthesize heparan sulfate with an antithrombin-binding site.

HS3st1 (heparan sulfate 3-O-sulfotransferase isoform-1) is a critical enzyme involved in the biosynthesis of the antithrombin III (AT)-binding site in the biopharmaceutical drug heparin. Heparin is a highly sulfated glycosaminoglycan that shares a common biosynthetic pathway with heparan sulfate (HS). Although only granulated cells, such as mast cells, biosynthesize heparin, all animal cells ar...

متن کامل

Toward a bioengineered heparin: challenges and strategies for metabolic engineering of mammalian cells.

Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Since Chinese hamster ovary (CHO) cells are capable of producing heparan sulfate (HS), a related polysaccharide naturally, and heparin and HS share the same biosynthetic pathway, we hypothesized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 264 14  شماره 

صفحات  -

تاریخ انتشار 1989